Artin’s Axioms, Composition and Moduli Spaces

نویسنده

  • JASON STARR
چکیده

We prove Artin’s axioms for algebraicity of a stack are compatible with composition of 1-morphisms. Consequently, some natural stacks are algebraic. One of these is a common generalization of Vistoli’s Hilbert stack and the stack of branchvarieties defined by Alexeev and Knutson.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-stable Degenerations and Period Spaces for Polarized K3 Surfaces

Modular compactifications of moduli spaces for polarized K3 surfaces are constructed using the tools of logarithmic geometry in the sense of Fontaine and Illusie. The relationship between these new moduli spaces and the classical minimal and toroidal compactifications of period spaces are discussed, and it is explained how the techniques of this paper yield models for the latter spaces over num...

متن کامل

BASE AXIOMS AND SUBBASE AXIOMS IN M-FUZZIFYING CONVEX SPACES

Based on a completely distributive lattice $M$, base axioms and subbase axioms are introduced in $M$-fuzzifying convex spaces. It is shown that a mapping $mathscr{B}$ (resp. $varphi$) with the base axioms (resp. subbase axioms) can induce a unique $M$-fuzzifying convex structure with  $mathscr{B}$ (resp. $varphi$) as its base (resp. subbase). As applications, it is proved that bases and subbase...

متن کامل

The Urysohn, completely Hausdorff and completely regular axioms in $L$-fuzzy topological spaces

In this paper, the Urysohn, completely Hausdorff and completely regular axioms in $L$-topological spaces are generalized to $L$-fuzzy topological spaces. Each $L$-fuzzy topological space can be regarded to be Urysohn, completely Hausdorff and completely regular tosome degree. Some properties of them are investigated. The relations among them and $T_2$ in $L$-fuzzy topological spaces are discussed.

متن کامل

Moduli of Complexes on a Proper Morphism

Given a proper morphism X → S, we show that a large class of objects in the derived category of X naturally form an Artin stack locally of finite presentation over S. This class includes S-flat coherent sheaves and, more generally, contains the collection of all S-flat objects which can appear in the heart of a reasonable sheaf of t-structures on X. In this sense, this is the Mother of all Modu...

متن کامل

On Atkin-Lehner correspondences on Siegel spaces

‎We introduce a higher dimensional Atkin-Lehner theory for‎ ‎Siegel-Parahoric congruence subgroups of $GSp(2g)$‎. ‎Old‎ ‎Siegel forms are induced by geometric correspondences on Siegel‎ ‎moduli spaces which commute with almost all local Hecke algebras‎. ‎We also introduce an algorithm to get equations for moduli spaces of‎ ‎Siegel-Parahoric level structures‎, ‎once we have equations for prime l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006